CPP-引用

引用

引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字。一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量。

引用vs指针

三个主要的不同:

  • 不存在空引用。引用必须连接到一块合法的内存。
  • 一旦引用被初始化为一个对象,就不能被指向到另一个对象。指针可以在任何时候指向到另一个对象。
  • 引用必须在创建时被初始化。指针可以在任何时间被初始化。

创建引用

& 读作引用。

实例:

1
2
3
4
5
6
7
int i = 17;

// 读作 "r 是一个初始化为 i 的整型引用"。
int& r = i;

// 读作 "s 是一个初始化为 d 的 double 型引用"
double& s = d;

int& r = i;int r = i; 不同之处应该是内存的分配吧,后者会再开辟一个内存空间。

验证实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>

using namespace std;

int main()
{
int i;
int &r = i;
i = 5;
cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r << endl;
cout << "Addr of i: " << &i << endl;
cout << "Addr of r: " << &r << endl;

int x;
int y = x;
x = 6;
cout << "Value of x : " << x << endl;
cout << "Value of y : " << y << endl;
cout << "Addr of x: " << &x << endl;
cout << "Addr of y: " << &y << endl;

return 0;
}

结果:

1
2
3
4
5
6
7
8
Value of i : 5
Value of i reference : 5
Addr of i: 0x61fe14
Addr of r: 0x61fe14
Value of x : 6
Value of y : 6497456
Addr of x: 0x61fe10
Addr of y: 0x61fe0c

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>

using namespace std;

int main()
{
// 声明简单的变量
int i;
double d;

// 声明引用变量
int &r = i;
double &s = d;

i = 5;
cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r << endl;

d = 11.7;
cout << "Value of d : " << d << endl;
cout << "Value of d reference : " << s << endl;

return 0;
}

结果:

1
2
3
4
Value of i : 5
Value of i reference : 5
Value of d : 11.7
Value of d reference : 11.7

把引用作为函数参数

C++之所以增加引用类型, 主要是把它作为函数参数,以扩充函数传递数据的功能。

C++ 函数传参:

  • (1)将变量名作为实参和形参。这时传给形参的是变量的值,传递是单向的。如果在执行函数期间形参的值发生变化,并不传回给实参。因为在调用函数时,形参和实参不是同一个存储单元。// 同 c
  • (2) 传递变量的指针。形参是指针变量,实参是一个变量的地址,调用函数时,形参(指针变量)指向实参变量单元。这种通过形参指针可以改变实参的值。// 同 c
  • (3) C++提供了 传递变量的引用。形参是引用变量,和实参是一个变量,调用函数时,形参(引用变量)指向实参变量单元。这种通过形参引用可以改变实参的值。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <iostream>
using namespace std;

// 函数声明
void swap(int &x, int &y);

int main()
{
// 局部变量声明
int a = 100;
int b = 200;

cout << "交换前,a 的值:" << a << endl;
cout << "交换前,b 的值:" << b << endl;

/* 调用函数来交换值 */
swap(a, b);

cout << "交换后,a 的值:" << a << endl;
cout << "交换后,b 的值:" << b << endl;

return 0;
}

// 函数定义
void swap(int &x, int &y)
{
int temp;
temp = x; /* 保存地址 x 的值 */
x = y; /* 把 y 赋值给 x */
y = temp; /* 把 x 赋值给 y */

return;
}

结果:

1
2
3
4
交换前,a 的值: 100
交换前,b 的值: 200
交换后,a 的值: 200
交换后,b 的值: 100

把引用作为函数返回值

通过使用引用来替代指针,会使 C++ 程序更容易阅读和维护。C++ 函数可以返回一个引用,方式与返回一个指针类似。

当函数返回一个引用时,则返回一个指向返回值的隐式指针。这样,函数就可以放在赋值语句的左边。

引用作为返回值:

  • (1)以引用返回函数值,定义函数时需要在函数名前加 &
  • (2)用引用返回一个函数值的最大好处是,在内存中不产生被返回值的副本。

必须遵守以下规则:

  • (1)不能返回局部变量的引用。主要原因是局部变量会在函数返回后被销毁,因此被返回的引用就成为了 无所指的引用,程序会进入未知状态。
  • (2)不能返回函数内部 new 分配的内存的引用。虽然不存在局部变量的被动销毁问题,可对于这种情况(返回函数内部new分配内存的引用),又面临其它尴尬局面。例如,被函数返回的引用只是作为一 个临时变量出现,而没有被赋予一个实际的变量,那么这个引用所指向的空间(由new分配)就无法释放,造成 memory leak
  • (3)可以返回类成员的引用,但最好是 const。主要原因是当对象的属性是与某种业务规则(business rule)相关联的时候,其赋值常常与某些其它属性或者对象的状态有关,因此有必要将赋值操作封装在一个业务规则当中。如果其它对象可以获得该属性的非常量引用(或指针),那么对该属性的单纯赋值就会破坏业务规则的完整性。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#include <iostream>

using namespace std;

double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0};

double &setValues(int i)
{
double &ref = vals[i];
return ref; // 返回第 i 个元素的引用,ref 是一个引用变量,ref 引用 vals[i],最后再返回 shit。
}

// 要调用上面定义函数的主函数
int main()
{

cout << "改变前的值" << endl;
for (int i = 0; i < 5; i++)
{
cout << "vals[" << i << "] = ";
cout << vals[i] << endl;
}

setValues(1) = 20.23; // 改变第 2 个元素
setValues(3) = 70.8; // 改变第 4 个元素

cout << "改变后的值" << endl;
for (int i = 0; i < 5; i++)
{
cout << "vals[" << i << "] = ";
cout << vals[i] << endl;
}
return 0;
}

结果:

1
2
3
4
5
6
7
8
9
10
11
12
改变前的值
vals[0] = 10.1
vals[1] = 12.6
vals[2] = 33.1
vals[3] = 24.1
vals[4] = 50
改变后的值
vals[0] = 10.1
vals[1] = 20.23
vals[2] = 33.1
vals[3] = 70.8
vals[4] = 50

当返回一个引用时,要注意被引用的对象不能超出作用域。所以返回一个对局部变量的引用是不合法的,但是,可以返回一个对静态变量的引用。

1
2
3
4
5
6
int& func() {
int q;
//! return q; // 在编译时发生错误
static int x;
return x; // 安全,x 在函数作用域外依然是有效的
}

C++ 引用