Python3学习-迭代器与生成器

迭代器

迭代器是一个可以记住遍历的位置的对象。

迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

迭代器有两个基本的方法:iter()next()

字符串,列表或元组对象都可用于创建迭代器:

1
2
3
4
5
6
>>> list=[1,2,3,4]
>>> it = iter(list) # 创建迭代器对象
>>> print (next(it)) # 输出迭代器的下一个元素
1
>>> print (next(it))
2

迭代器对象可以使用常规for语句进行遍历:

1
2
3
4
5
6
#!/usr/bin/python3

list=[1,2,3,4]
it = iter(list) # 创建迭代器对象
for x in it:
print (x, end=" ")

输出结果:

1
1 2 3 4

next() 函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/python3

import sys # 引入 sys 模块

list=[1,2,3,4]
it = iter(list) # 创建迭代器对象

while True:
try:
print (next(it))
except StopIteration:
sys.exit()

# 输出
1
2
3
4

迭代

Python 中有一些对象可以通过 for 来循环遍历,比如:列表、元组、字符等,遍历的过程就是迭代。

以字符串为例,如下所示:

1
2
for i in 'Hello':
print(i)

可迭代对象

可迭代对象需具有 __iter__() 方法,它们均可使用 for 循环遍历,我们可以使用 isinstance() 方法来判断一个对象是否为可迭代对象:

1
2
3
4
5
from collections import Iterable

print(isinstance('abcd', Iterable))
print(isinstance({1, 2, 3}, Iterable))
print(isinstance(1024, Iterable))

结果:

1
2
3
True
True
False

迭代器

迭代器需要具有 __iter__()__next__() 两个方法,这两个方法共同组成了迭代器协议,通俗来讲迭代器就是一个可以记住遍历位置的对象,迭代器一定是可迭代的,反之不成立。

  • __iter__():返回迭代器对象本身
  • __next__():返回下一个迭代器对象

迭代器对象本质是一个数据流,它通过不断调用 __next__() 方法或被内置的 next() 方法调用返回下一项数据,当没有下一项数据时抛出 StopIteration 异常迭代结束。

实例

创建一个返回数字的迭代器,初始值为 1,逐步递增 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class MyNumbers:
def __iter__(self):
self.a = 1
return self

def __next__(self):
x = self.a
self.a += 1
return x

myclass = MyNumbers()
myiter = iter(myclass)

print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))

执行输出结果为:

1
2
3
4
1
2
.
5

StopIteration
StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。raise 关键字用于引发一个异常。

在 20 次迭代后停止执行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class MyNumbers:
def __iter__(self):
self.a = 1
return self

def __next__(self):
if self.a <= 20:
x = self.a
self.a += 1
return x
else:
raise StopIteration

myclass = MyNumbers()
myiter = iter(myclass)

for x in myiter:
print(x)

输出结果:

1
2
3
4
5
1
2
...
19
20

生成器

使用了 yield 的函数被称为生成器(generator)。

yield 是一个关键字,yield 返回的是一个生成器(在 Python 中,一边循环一边计算的机制,称为生成器)。

作用:有利于减小服务器资源,在列表中所有数据存入内存,而生成器相当于一种方法而不是具体的信息,用多少取多少,占用内存小。

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,可以理解为生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

使用 yield 实现斐波那契数列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/python3

import sys

def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if (counter > n):
return
yield a
a, b = b, a + b
counter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成

while True:
try:
print (next(f), end=" ")
except StopIteration:
sys.exit()

输出:

1
0 1 1 2 3 5 8 13 21 34 55

参考:

Python 基础(十六):迭代器与生成器

https://docs.python.org/zh-cn/3/tutorial/classes.html#iterators